Wychwood Maths Policy- Addition

Objective and strategy	Concrete	Pictorial	Abstract
Year 3 Add multiples of $\mathbf{1 0 0}$ Children apply their prior knowledge of adding ones and tens to adding multiples of 100 . They explain what is the same and what is different. They look for patterns and links between the representations and value of the digits.	They discuss what is the same and different about 2 ones, 2 tens and 2 hundreds using Diennes to show how large the numbers are. They find the sum of: - 2 ones and 4 ones - 2 tens and 4 tens -2 hundreds and 4 hundreds.	Record representations of the numbers on whiteboards thinking about relative size.	Record the value of each number using digits. $\begin{array}{ll} 2 & 2+4=6 \\ 20 & 20+40=60 \\ 200 & 200+400=600 \end{array}$ They find 'families' of number sentences to show relationships. $\begin{aligned} & 200+400=600 \\ & 400+200=600 \\ & 600=200+400 \\ & 600=400+200 \end{aligned}$
Add 3-digits and 1-digit not crossing 10 Children add ones to a 3digit number without exchange. They focus upon the ones' column. Mental strategies, rather than column addition, are promoted as they are most efficient.	Use Diennes or Place Value Counters to represent the addition. 265 and 3 more is \qquad	Record representations of the numbers on whiteboards. 347 add 2 more is \qquad	Asher wants to work out $432+2+4$ Show two ways that he could do this. $\begin{aligned} & 432+2+4= \\ & 432+2=434 \\ & 434+4 \cdot 438 \end{aligned}$

Wychwood Maths Policy- Addition

	Hundreds Tens Ones 008 10 10 00 10 00 001 Sarah has added ones to get this answer. What could her calculation have been?	Amir says that the answer to this calculation is 337. Do you support or challenge him? Explain your thinking using the representation to help you.	$\begin{aligned} & 432+2+4= \\ & 4+32+6=438 \end{aligned}$
Add 3-digits and 1 digit crossing 10 Children discover that when adding ones, it can affect the ones and the tens column. They learn that once there are ten ones they have to be exchanged for a ten.	Two hundred and forty five add seven more makes ... Ten ones are exchanged for one ten.$375+8=$Hundreds Tens Ones 100100100 10 10 10 10 10 1 10 10 1 1	When counting on, the tens' boundary is crossed to reach the final answer. Record representations of the numbers on a whiteboard or notebook. $146+7=153$ H	The ones digit can be partitioned to complete the number bond to 10 . $146+7=$ $150+3=153$ 6 and 4 make the number bond to 10 so 7 is split into a 4 and 3 . The 4 is added first to take the number to the next ten then the three.

	Ten ones are gathered together and Exchanged for a ten.		
Add 3-digits and 2-digit not crossing 100 Chidren find out what happens when a multiple of ten is added. Mental they the most efficient.	Eva adds 3 tens to her number. What is her new number?	Representations are recorded on a white board to visualise and support solving the problem. 228 add three more tens H 吅 II II 258	$230+60=$ \qquad What multiples of 10 could complete this calculation? $726+\text { _0 + _0 = 7_6 }$

Wychwood Maths Policy- Addition

	How many more tens can be added to Eva's number before exchange will be needed? 4 (298)		
Add 3-digits and 2 digit crossing 100 Children add multiples of 10 to a 3-digit number. They recognise that adding tens can change both the tens and the hundreds column. They count in tens as it is more efficient than column addition.	Using Diennes or place value counters to exchange 10 tens for a hundred. One hundred and seventy six add forty more makes ... two hundred and sixteen. Ten tens are exchanged for one hundred.	Show the 'collecting up' of ten tens and exchanging for 100 by drawing representations. $479+50=529$	The multiple of ten can be partitioned to create a bond to 100 in the tens column. A Cherry model could be used to show the partitioning. 50 and 50 make the number bond to 100 so 80 is split into a 50 and 30 . The 50 is added first to take the number to the next hundred then the 30 is added.

Wychwood Maths Policy- Addition

			On Friday Jim's hens laid 37 eggs. Over the weekend they laid another 132 eggs. How many did they lay altogether? Charlie is off to feed the penguins at the zoo. He has 314 fish in his truck and needs another 52. How many fish will he take to the penguins?
Add a 2-digit and 3-digit numbers crossing 10 and 100 Children begin by adding numbers where there is exchange from ones to tens column. They go on to exchange tens for hundreds. Finally, they complete calculations with exchange from both columns. Concrete methods support children's understanding of the abstract column method.	What is thirty six more than seven hundred and fifty seven? Both numbers are set out on a place value chart. There are 13 ones.	Children draw representations of Diennes. $757+36=$ As there are 13 ones, children draw round 10 ones and exchange them for a ten.	Children transfer their understanding of exchange to formal column addition.

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Add two 3-digit numbers crossing 10 and 100 Children add two 3-digit numbers beginning with a single exchange in either the ones or tens column. They then experience working with exchange in both the ones and the tens. Finally, children will extend the pattern exchanging 10 hundreds for a thousand. Diennes and place value counters are still used to support understanding.

$$
358+126=484
$$

Only exchanging 10 tens for a hundred.

Only exchanging 10 ones for a ten.

Only exchanging 10 tens for a hundred.

Only exchanging 10 ones for a ten.

	\mathbf{H}	T	\mathbf{O}
	3	5	8
+	1	2	6
	4	8	4
		1	

Only exchanging 10 tens for a hundred.

	\mathbf{H}	\mathbf{T}	\mathbf{O}
	3	5	1
+	1	7	6
5	2	7	
	1		

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Adding decimals

 Children extend their understanding of addition to work with decimal numbers with up to 3 decimal places- adding within 1
- adding crossing the whole
- adding numbers with the same number of decimal places
- adding numbers with a different number of decimal places

Adding within 1
Children use manipulatives to consider questions such as:

What number is one hundredths more? If 0.3 is added, what is the new number? How many more thousandths can I add before the hundredths digit changes?

Adding within 1

Children colour in hundred squares to add
tenths and hundredths.

$$
0.67+0.05=0.72
$$

They interpret models and images.

Adding within 1

Column addition is used to solve addition calculations.

	\mathbf{O}	.	\mathbf{t}	\mathbf{h}	th
	0	.	3	5	5
+	0	.	0	3	6
0	.	3	9	1	
				1	

Click here for a video.

Wychwood Maths Policy- Addition

Wychwood Maths Policy- Addition

Adding decimals with the same number of decimal places.
Place value charts support children's understanding of the value of each digit and when to exchange

$$
24.27+7.58=31.85
$$

	0	.	8	1	7
+	0	.	3	5	4
1	.	1	7	1	
	1			1	

Click here for a video

Adding decimals with the same number of decimal places.

Place value column headings support placing the digits in the correct columns.

\mathbf{T}	$\mathbf{0}$.	\mathbf{t}	\mathbf{h}
$\mathbf{2}$	$\mathbf{4}$.	$\mathbf{2}$	7
+	7	.	5	8
3	1	.	8	5
1			${ }^{1}$	

Adding numbers with a different number of decimal places.

Wychwood Maths Policy- Addition

